CONTINUING EDUCATION

To earn CEUs, see test on page 20.

LEARNING OBJECTIVES

Upon completion of this article the reader will be able to:

1. Describe three indicators of a contaminated blood culture
2. Identify four common causes of contaminated blood cultures
3. Discuss four ways to reduce contamination rates.
4. Describe the proper site preparation procedure for blood collection

COVER STORY

Controlling blood-culture contamination rates

By Dennis J. Ernst, MT(ASCP)

One of the more frustrating problems plaguing hospitals and laboratories is the rate with which bacteria external to the patient contaminate blood cultures. If specimen collectors use poor collection technique, they can introduce organisms into blood-culture bottles that mislead lab technicians and physicians into thinking that patients have potentially life-threatening bacteremias when, in fact, they do not. The results of such misleading findings can be measured in both financial and human terms. One study shows that contaminated blood cultures can increase a patient’s hospital stay by as much as 4.5 days and add more than $5,000 to the cost of treatment (adjusted for inflation since the study was published). More importantly, contaminated blood cultures can keep patients from rejoining their families and their jobs and from reclaiming their daily lives.

Because physicians rely heavily on blood-culture results to diagnose and monitor febrile patients, few results can have such a profound effect on patient care as an erroneous blood-culture report. Since the advent of cross-training for healthcare professionals, it has never been more difficult to control blood-culture contamination rates. Because healthcare workers from many different disciplines within a facility are now drawing blood specimens — and the lines of authority over them are often blurred — many laboratorians are understandably frustrated and tempted to give up the fight to maintain unadulterated samples. Recent studies have given laboratorians new ways to combat the problem. A review of these findings, as well as information about sound collection practices, can arm healthcare professionals with specific strategies to prevent the expensive and unfortunate consequences of poor phlebotomy technique.

Bacteria can infect the circulatory system from intravascular and extravascular sources. Intravascularly, microorganisms can originate from infected organs, cavities, fluids (e.g., cerebral spinal, synovial, or pericardial), untreated superficial wounds, abscesses, urinary tract infections, or respiratory infections. Such infections, if aggressive or left untreated, can spread rapidly throughout the body. Immunocompromised patients are especially vulnerable to isolated infections becoming systemic. Extravascular sources of septicemia-contaminated vascular-access devices (e.g., arterial lines or central venous catheters), urinary catheters, or other foreign devices can also provide ports for bacteria to exploit the oxygen- and nutrient-rich environment of the circulatory system. Regardless of the source of the infection, if an isolated infection becomes systemic, physicians must act quickly.

Reporting positive blood cultures that are not consistent with the patient’s condition, diagnosis, or clinical symptoms, however, puts physicians in a quandary. Often, doctors must decide whether to ignore a result that could be life threatening, or to consume valuable hospital resources fighting an infection that might not exist. Posed with this paradox, many choose the conservative approach: administer antibiotics, extend the patient’s stay, and monitor the patient with more tests. Few collection errors are as costly to the hospital, the laboratory, and the patient as blood cultures that are compromised by inattentive specimen-collection practices.

According to the standards published by the American Society for Microbiology, the rate of blood-culture contamination should not exceed 3%, but eliminating all suspected false positives is not a realistic goal. Some suspected contaminants might be associated with transient bacteremias (bacteria that exist...
momentarily in the bloodstream and then are engulfed by the body's cellular immune response). These bacteremias enter the bloodstream through stress or trauma to mucous membranes (e.g., dental work, injuries to the nasopharyngeal cavities, or obstructed bowel), or through invasive procedures that disrupt tissue integrity (e.g., urinary catheterization or colonoscopy). The average contribution of transient bacteremias to a facility's contaminated-culture rate can never be known. When a hospital finds its overall rate creeping beyond 3%, however, it is an indication that blood cultures are not being collected with proper attention to aseptic technique. For a listing of the rates at which different organisms contaminate blood-culture samples, see Table 1.

<table>
<thead>
<tr>
<th>Organism</th>
<th>False positives</th>
<th>True positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus spp.</td>
<td>>90%</td>
<td><10%</td>
</tr>
<tr>
<td>Coag-negative Staphylococcus spp.</td>
<td>>90%</td>
<td><10%</td>
</tr>
<tr>
<td>Propionibacterium spp.</td>
<td>>90%</td>
<td><10%</td>
</tr>
<tr>
<td>Corynebacterium spp.</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>Viridans streptococci</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Clostridium spp.</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Staphylococcus aureus spp.</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>15%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Indicators of contamination

Fortunately, indicators exist that can alert physicians and laboratory technicians that the specimen might have been contaminated during collection or processing. These indicators include:

- frequency of positive bottles among collections;
- Gram-stain results from positive bottles;
- white blood cell (WBC) count/differential;
- number of organisms isolated;
- patient symptoms; and
- time required for growth to become detectable.

Frequency. Blood cultures that are legitimately positive, (that is, contain growth from in vivo bacteria), typically demonstrate growth in every set collected. For example, if three sets of cultures are collected and all three sets demonstrate growth, it is probable that the patient has a rampant bacterial infection. Conversely, growth in only one out of three cultures suggests contamination.

Gram-stain results. Gram stains from positive cultures that demonstrate characteristics of normal skin flora should be suspect. Gram-positive cocci in clusters indicate staphylococci; small Gram-positive rods appearing in palisades (“picket fence” arrangements) suggest Corynebacterium spp.; Gram-positive, club-shaped rods characterize Propionibacterium spp.; and Gram-positive cocci in pairs are typically of alpha and gamma streptococci. The large Gram-positive rods of Bacillus spp., although not normal skin flora, are an environmental contaminant that can find their way onto the skin and ultimately into a blood-culture bottle. The presence of any of these organisms hints that the puncture site might not have been cleansed with attention to aseptic technique. Unfortunately, some of these organisms can also cause septicemia; so in the absence of other indicators, the identification of these organisms by Gram-stain morphology alone is not reason enough to dismiss the culture as contaminated.

Elevated WBC count/abnormal differential. Legitimately positive blood cultures are often accompanied by an elevated white blood cell count and provide evidence that a cellular response to an infection is taking place. Additionally, a left shift in the differential (>10% bands), with or without an elevated WBC, adds credibility to a positive blood culture. The absence of these indicators is a vote against a legitimately positive culture.

Multiple organisms isolated. True septicemias are almost exclusively caused by an infection with a singular organism. Although multiple-organism infections can occur, the presence of two or more organisms, especially in combination with other indicators, is usually a result of poor site preparation.

Patient symptoms. The body’s natural response to bacterial invasions is to trigger a rise in temperature to burn out the pathogen. This defense might present itself in the form of “fever spikes,” in which the patient experiences a rising and falling of temperature, or as constant, low-grade fevers. Legitimately septic patients, therefore, are constantly or occasionally febrile. The absence of a temperature in the presence of positive blood cultures creates a conflicting picture and raises questions about the validity of the culture result.

Time required for growth to become detectable. Patients who are legitimately septic often demonstrate immediate growth in their blood-culture bottles. Assuming sufficient volumes of blood have been inoculated into the bottles, bacteria should multiply to detectable levels within 48 hours, often much sooner. Conversely, growth that is slow to emerge indicates that only a miniscule number of organisms have been inoculated into the broth, which is typical for collections contaminated from external sources.

Questionable culture results should be interpreted in light of all these factors before treating the patient for septicemia. If these indicators exist in combination, contamination is suggested. To simplify the decision-making process, many facilities adopt an algorithm based on some combination of these indicators.

Factors affecting blood-culture collection

Certain factors have a critical bearing on drawing a blood-culture specimen. These factors include:

- training of blood-collection personnel;
- location of collection site;
- preparation of puncture site;
- blood-collection equipment; and
- collection volume.

Personnel. A Q-Probe study released by the College of American Pathologists (CAP) in 1998 identified several key elements that contribute to high contamination rates. One clearly determining factor was the use of a multis skilled workforce to draw blood specimens. When blood cultures were collected by personnel who were not members of a specifically designated phlebotomy team, the contamination rate was significantly higher (77%) than for members of such a team. In fact, the lowest contamination rates were associated with facilities in which 90% or more of the blood cultures were collected by a trained phlebotomy staff. A second study found
a dramatic reduction in blood-culture contamination (as much as 86%) when a collection staff was established (see Table 2).

Several studies have projected the overall cost savings to a facility when a dedicated phlebotomy team is employed to collect blood cultures. An editorial published in the Mayo Clinic Proceedings in 1998 calculates that “the typical savings associated with using a phlebotomy service can be predicted to be about $20 per blood-culture specimen collected.” A study by Weinbaum, et al., reports that the mean hospital charges for patients with false-positive blood cultures was more than 50% higher than for similar patients with true-negative cultures. The report projected that the 487-bed facility studied might save as much as $1.2 million annually if it employed a dedicated phlebotomy team to collect blood cultures.

Unfortunately, many laboratories no longer have the luxury of maintaining a dedicated team of phlebotomists. For these facilities, it is critically important to continuously monitor and educate those collecting blood for cultures to keep contamination rates as low as possible. One approach is to employ a “micromanagement” strategy. A study published in the Archives of Pathology and Laboratory Medicine showed that almost a 50% reduction in contaminated blood cultures occurred when the contamination rates of each collector were monitored and individual collectors were informed of their rates.°

Site selection. The location of the collection site has a significant impact on the potential for a culture to be contaminated. Draws from vascular-access devices, such as arterial lines, central venous catheters, and heparin locks, have been shown to result in high contamination rates. Because these ports pass through the skin and remain there for long periods of time, they are susceptible to bacterial colonization. Colonized bacteria multiply and accumulate in and around invasive ports, and can be pulled into blood specimens drawn from those sites.

To confirm that a positive blood culture is caused by colonization, a second blood culture must be drawn at the same time by skin puncture, and the results compared. (Some facilities have a policy to draw peripheral cultures simultaneously whenever a culture is taken through a vascular-access device.) A negative culture by venipuncture, in conjunction with a positive culture by line draw, confirms colonization, whereas positive cultures drawn from both sites confirm septicemia. If the culture collected by venipuncture is contaminated because of poor technique, then it becomes necessary to compare the organisms isolated to determine if true septicemia exists. Hence, any benefits to collecting cultures by a
line draw are outweighed by the expense of confirmatory col-
collections by venipuncture and should be avoided.

Site preparation. Aseptic site preparation is without ques-
tion the single most important factor in collecting uncon-
taminated blood cultures. Iodine-based antiseptics, sometimes
used along with isopropyl alcohol, have become the industry
standard for preparing puncture sites. Separately packaged
alcohol preps and antiseptic swabs are available, but using
them in tandem has been found to be less effective than em-
ploying commercially prepared prep kits, such as Cepti-Seal,
ChloraPrep (Mediflex Hospital Products, Overland Park, KS)
and Persist (BD, Franklin Lakes, NJ).

Not all iodine com-
ponents are equal. One
study showed that iodine
tincture is more effective in
reducing contamination
rates than iodine in an io-
dophor (e.g., povidone). Additionally, it appears that the
effectiveness of the an-
tiseptic is a function of who
is using it. The previously
mentioned CAP Q-Probe
study showed that prepara-
tion of puncture sites with
leucine of iodine, as op-
poised to an iodophor, was
superior in combating con-
tamination at sites where
nonphlebotomy personnel
collected cultures. Both forms of iodine were ef-
effective in facilities that employed a designated phle-
botomy team. The study’s authors speculate that
such teams are better trained and have a greater
awareness of the relationship between contact time
and site asepsis.

A relative newcomer to the arsenal of site
preparation options is chlorhexidine scrubs. Stud-
ies show that chlorhexidine is just as effective as
iodine, but with an extremely low potential for skin
irritation and allergic contact sensitization.

Site preparation starts with a 30- to 60-second
scrub with the antiseptic. (If isopropyl alcohol is
used, it is applied first to remove most of the sur-
facing contaminants, followed by the application of
the antiseptic.) When applying the antiseptic, cover
the skin two inches or more in all directions, then
complete the process by starting from the center and moving
outward in circles of increasing diameter. Some procedures
call for an antiseptic scrub followed by an alcohol cleansing,
then a final application of the antiseptic in increasingly larger
concentric circles, as described. Regardless, the bacteriostatic
effect of antiseptic compounds is directly proportional to the
length of time they are allowed to remain in contact with the
skin. Generally, at least 30 seconds of contact is necessary be-
fore the puncture to assure proper site preparation.

Blood-culture contamination is most likely to occur dur-
ing attempts to relocate difficult-to-find veins by palpation

NCCLS’ order of draw

After conferencing with industry authorities for over a year, the National Committee for Clinical Laboratory Standards (NCCLS) simplified the order of draw to function, regardless of the type of tubes being filled and regardless of whether a tube holder or syringe is used to collect the specimen. The order of draw is now as follows:

1. Sterile tubes for cultures
2. Sodium citrate tube (blue stopper)
3. Serum tube (with or without clot activator or gel; e.g., red-gold- or speckle-stopper)
4. Heparin tube (green stopper)
5. EDTA tube (lavender stopper)
6. Oxalate-fluoride tube (gray stopper)

Although NCCLS notes that glass nonadditive serum tubes
can be drawn before the citrate tube, it simplified the order
above to function for all serum tubes, regardless of content.

(2) Ninety-eight percent of septicemias are caused by aero-
bic or anaerobic organisms that can tolerate aerobic envi-
ronments (facultative anaerobes). If blood flow is interrupted
and cannot be resumed before the anaerobic bottle is filled,
most of the causative organisms of septicemia will still be
detected.

Using a syringe. When blood is collected into a syringe
— either directly or through a butterfly set — the safety fea-
ture of the needle should be immediately activated upon re-
moval from the vein, removed from the syringe, and care-
fully discarded into an approved sharps container. Attach a
Continues on page 18
Tips on collection technique

1. Proper site cleansing consists of a 30- to 60-second scrub with the antiseptic, terminating with a final swabbing that starts from the intended puncture site and moves outward in circles of increasing diameter. Allow to dry.

2. When using a winged infusion set, always attach a tube holder onto the Luer adapter end to prevent an accidental needlestick.

3. Stretch the skin over the intended puncture site by pulling down with the thumb of your nondominant hand; then insert the needle at a low angle.

4. Once the vein is accessed, depress the tube holder onto the cap to the bottle, piercing the stopper. Fill with 10 mL to 12 mL of blood.

5. When both bottles are filled to the recommended volume, place gauze over the puncture site, remove the needle, and apply pressure. Activate the device’s safety feature, and discard the needle immediately into a sharps container.

Dennis J. Ernst, MT(ASCP), is director of The Center for Phlebotomy Education Inc., and an MLO Editorial Advisory Board member. He has adapted and updated this article from one he originally published in MLO in May 2000.

References

