

Evaluation of the VIDAS *Clostridium difficile* Toxin A&B Assay Clinical Performance Compared to the Cellular Cytotoxicity and Meridian Premier Toxins A&B Assays and Assessment of the Assay's Limit of Detection, Cross-Reactivity and Interference Characteristics

B. Rice¹, N. Dumas², R. Smith², S. Young², M. Amphlett³, K. Nancekievill³, L. Bridon⁴, A. Foussadier⁴, D. Rolland⁴

¹bioMérieux Inc., Durham, NC, ²TriCore Reference Laboratories, Albuquerque, NM, ³ HPA Addenbrooke's Hospital, UK, ⁴ bioMérieux SA, Marcy L'Etoile, France

ABSTRACT

Background: The performance of the VIDAS® C. difficile Toxin A&B (CDAB) qualitative test for the detection of C. difficile toxins A and B in stool specimens was compared to the gold standard Cellular Cytotoxicity (CTA) and the Meridian Premier™ Toxins A&B EIA (Premier) assay. The limit of detection (LoD) of the CDAB assay for toxin A and toxin B was evaluated. The cross-reactivity and interference of colonic flora bacteria and viruses was assessed and the reactivity of toxigenic C. difficile strains was evaluated. Methods: 1011 fresh stool specimens were prospectively collected and tested at two clinical sites (US and UK) using the CDAB and Premier tests. CTA testing was centralized and performed at bioMérieux, SA. Dilutions of toxin A and toxin B were performed in buffer and stool matrix to determine the LoD. 44 bacteria and 2 viruses were diluted in the CDAB negative and positive controls and then processed like a patient sample to assess cross-reactivity and interference. 23 C. difficile A+/B+ and 18 C. difficile A-/B+ strains were tested for reactivity with the CDAB assay. Results: The Sensitivity, Specificity, PPV and NPV of the CDAB compared to CTA were 88.3%, 99.8%, 98.1% and 98.4% respectively. The Sensitivity, Specificity, PPV and NPV of the Premier EIA compared to CTA were 86.4%, 97.4%, 83.2% and 97.9% respectively. The Positive agreement, Negative agreement and Total agreement of the CDAB compared to Premier were 81.3%, 99.5% and 97.1% respectively. The LoD of the CDAB for toxin A and toxin B was determined to be 3 ng/mL and 1 ng/mL respectively in buffer and 7.73 ng/mL and 4.55 ng/mL respectively in stool matrix. Cross-reactivity was observed only with C. sordelli strain VPI 9048. No interference was detected. The CDAB detected 23/23 (100%) of the C. difficile A+/B+ strains and 15/18 (83%) C. difficile A-/B+ strains. 3 of the A-/B+ strains gave equivocal results. Conclusion: The Sensitivity, Specificity, PPV and NPV of the

INTRODUCTION

C. difficile has been found to be the major etiologic agent of antibiotic-associated pseudomembranous colitis (PMC). PMC is a clinically defined syndrome, associated with a recent history of antibiotic use, where pseudomembranous nodules or plaques form in the distal and sigmoid colon and rectum. If unrecognized or untreated, the disease can be fatal. Noscormial acquisition of C. difficile is a serious consideration for some institutions, particularly those with high inpatient populations, chemotherapy wards, or long-term patient care. C. difficile can either be toxigenic or nontoxigenic. Toxigenic strains of C. difficile produce an enterotoxin (toxin A) as well as a cytotoxin (toxin B) in roughly equivalent amounts. However, some strains produce toxin B but not toxin A. It is possible that these strains are under-diagnosed due to the common use of diagnostic methods that detect only toxin A. The VIDAS® C. difficile Toxin A & B (CDAB) Assay is an automated test for use on the VIDAS instruments for the qualitative detection of Clostridium difficile toxin A and toxin B in stool specimens using the ELFA technique (Enzyme-Linked Fluorescent Assay).

<u>Clinical Study</u>: A total of 1011 fresh stool specimens were collected and tested at site 1 (TriCore Reference Laboratories) and site 2 (Addenbrooke's Hospital). Each sample was tested using the VIDAS

C. difficille Toxin A & B assay on the VIDAS instrument and the Meridian Premier Toxins A&B EXA. Cellular cytotoxicity assay (gold standard) testing of each sample was centralized and performed at bioMérieux, SA using Vero cells.

Limit of Detection (LoD): Buffer condition: Serial dilutions of recombinant toxin A and B in TRIS BSA 5% buffer were tested ten times with one VIDAS CDAB lot on two VIDAS instruments (n=20). Each dilution of toxins A and B was processed like a patient sample (1:6 dilution with the kit sample buffer). Stool Matrix condition: LoD was determined according to CLSI EP17-A using a negative human stool pool mixed with fetal calf serum (60%/50%) and spiked with various levels of toxin A or toxin B. In total, 60 replicates of each dilution were tested for each toxin. The smallest amount corresponding to the limit where truly positive samples produce a positive result 95% of the time was defined as the LoD.

<u>Cross-reactivity and Interference</u>: To test for cross-reactivity, each bacteria or virus was diluted in the VIDAS CDAB negative control, processed like a patient sample, and tested in singlicate using one VIDAS CDAB reagent lot. To test for interference, each bacteria or virus was diluted in the VIDAS CDAB toxin A and toxin B controls, processed like a patient sample and tested in singlicate for each control using one VIDAS CDAB reagent lot. The bacteria were tested at a concentration of 1 x 10° CFU/mL (1 McFarland). Test values obtained with the spiked C1, C2 and C3 controls were compared to the kit specific expected values of the controls. If the results showed conformity to the expected range, no cross-reactivity or interference was present

<u>Toxigenic C. difficile Strain Study:</u> C. difficile strains were grown in Yeast Peptone broth and tested for reactivity with the VIDAS CDAB assay. Supernatant culture material from each strain was processed like a patient sample. A single replicate of each strain was tested using one

RESULTS

The VIDAS CDAB assay was compared to cellular Cytotoxicity assay and to the Meridian Premier Toxins A&B assay. The results showed an overall Sensitivity, Specificity, PPV and NPV of 88.3%, 98.8%, 98.1% and 98.4% respectively for the VIDAS when compared to Cytotoxicity and a Positive and Negative agreement of 81.3% and 99.5% respectively when compared to Premier Toxin A&B assay.

Table 1: VIDAS CDAB Compared to Cellular Cytotoxicity Assay

			Cyto	toxicity A	ssay			
			Positive	Negative	Total	Performance	Value (%)	95% CI
		Positive	106	2*	108	Sensitivity (%)	88.3	81.2 -93.5
١	VIDAS CDAB	Equivocal	12	30	42***	Specificity (%)	99.8	99.2 - 99.9
		Negative	14**	847	861	PPV (%)	98.1	93.5 - 99.8
L		Total	132	879	1011	NPV (%)	98.4	97.3 - 99.1

² samples were VIDAS CDAB positive and Cytotoxicity test negative, of which both were Premier negative.
1"44 samples were VIDAS CDAB negative and Cytotoxicity test positive, of which 10 were Premier negative and 4 Premier positive.
"42/1011(4.2%) samples were VIDAS CDAB equivocal and were not taken into account for the sensitivity, specificity, PPV & NPV calculations

Table 2: Premier Toxins A&B Compared to Cellular Cytotoxicity Assay

		Cytotoxicity Assay			Performance	Performance Value (%)		
		Positive	Negative	Total	Sensitivity (%)	86.4	79.3 - 91.7	
Premier	Positive	114	23*	137	Specificity (%)	97.4	96.1 - 98.3	
Toxin	Negative	18**	856	874	PPV (%)	83.2	75.9 - 89.0	
A&B	Total	132	879	1011	NPV (%)	97.9	96.8 - 98.8	

^{*23} samples were Cytotoxicity test negative and Premier positive, of which 20 were VIDAS CDAB negative and 3 were VIDAS CDAB equivocal.

Table 3: VIDAS CDAB Compared to Premier Toxins A&B Assay

		Prem	ier Toxin	n A&B			
		Positive	Negative	Total			
VIDAS CDAB	Positive	104	4*	108	Performance	Value (%)	95% CI
	Equivocal	9	33	42***	Pos Agreement	81.3	73.4 - 87.6
	Negative	24**	837	861	Neg Agreement	99.5	98.8 - 99.9
	Total	137	874	1011	Global Agreemen	t 97.1	95.9 - 98.1

^{*4} samples were VIDAS CDAB positive and Premier negative, of which 2 were Cytotoxicity test positive.

Table 4: Limit of Detection

Matrix	Toxin A	Toxin B
Buffer	3.00 ng/mL	1.00 ng/mL
Stool	7.73 ng/mL	4.55 ng/mL

Table 5: Cross Reactivity and Interference

List of the bacteria and viruses tested for cross reactivity and interference with the VIDAS CDAB

assay. Organism	Strain #	Organism	Stain #
Adenovirus 40	bMx 98007	Clostridium tetani	bMx 8808010C
Adenovirus 41	bMx 98008	Enterobacter aerogenes	ATCC 2121421
Rotavirus	bMx 60500455	Enterobacter cloacae	ATCC 2121422
Aeromonas hydrophila ssp hydrophila	ATCC 35654	Enterococcus faecalis	ATCC 29212
Bacillus cereus	ATOC 2231042	Escherichia coli	ATCC 25922
Bacillus subtilis	ATCC 2231010	Escherichia coli 0157:H7	ATCC 43889
Bacteroides fragilis	ATCC 25285	Helicobacter pylori	ATCC 2413042
Campylobacter coli	ATCC 33559	Klebsiella pneumoniae	ATCC 2121411
Campylobacter jejuni spp jejuni	ATCC 33560	Peptostreptococcus anaerobius	ATCC 27337
Candida albicans	ATCC14053	Porphyromonas asaccharolytica	bMX 8907158
Clostridium bifermentans	ATCC 638	Proteus vulgaris	ATCC 2121517
Clostridium butyricum	ATCC19398	Pseudomonas aeruginosa	ATCC 27853
Clostridium difficile (nontoxigenic)	VPI 0210114	Salmonella enteritidis	ATCC 25928
Clostridium haemolyticum	ATOC 2425083	Salmonella Groupe B (paratyphi B)	ATCC 8759
Clostridium histolyticum	ATCC 19401	Salmonella typhimurium	ATCC 2121212
Clostridium innocuum	bMx 8206019	Serratia liquefaciens	ATCC 2121441
Clostridium novyi	ATCC 7659	Shigella dysenteriae	bMx 8802065
Clostridium perfringens	ATCC 13124	Shigella flexneri	ATCC 12661
Clostridium septicum	ATCC 12464	Shigella sonnei	bMx 8303066
Clostridium sordelli	ATCC 9714	Staphylococcus aureus ssp aureus	ATCC 12599
Clostridium sordelli*	VPI 9048	Staphylococcus epidermidis	ATCC 2222101
Clostridium sporogenes	ATCC 19404	Vibria parahaemolyticus	ATCC 2122103
Clostridium subterminale	bMx 8508074	Vibrio cholerae	bMx 8208005
Clostridium tertium	ATCC 14573	Yersinia enterocolitica	bMx 0001031
* Cross-reactivity with C. sordelii VPI 9048	is observed depending	fg on the culture conditions used:	•

None of the bacteria or viruses tested showed Cross reactivity or interference when tested with the VIDAS CDAB assay.

Table 6: C. difficile Toxigenic Strains

Strains A+/B+	Test value	Interpretation	Strains A-/B+ Ribo	type 017	Test value	Interpretation
R8366	5.74	POSITIVE	R2140		1.86	POSITIVE
R14935	5.66	POSITIVE	R13167		1.23	POSITIVE
R14988	3.22	POSITIVE	R11092		1.08	POSITIVE
R14990	4.87	POSITIVE	R12878		0.86	POSITIVE
R15262	5.38	POSITIVE	R10430		0.93	POSITIVE
R15657	0.66	POSITIVE	R10205		0.78	POSITIVE
R15826	5.3	POSITIVE	R16792		1.11	POSITIVE
R15832	0.92	POSITIVE	R16509		0.31	EQUIVOCAL
R15947	4.92	POSITIVE	R16486		1.33	POSITIVE
R16326	4.79	POSITIVE	R16475	R16475		POSITIVE
R16810	3.02	POSITIVE	R16480		4.25	POSITIVE
R4622	5.45	POSITIVE	R16090		2.13	POSITIVE
R15673	0.77	POSITIVE	R15452		0.96	POSITIVE
R16631	5.04	POSITIVE	R13695	R13695		POSITIVE
R16808	1.27	POSITIVE	R15652		1.04	POSITIVE
R15516	3.19	POSITIVE	Strains A-/B+ Ribo	type 047	Test value	Interpretation
R16690	5.51	POSITIVE	R10542		0.7	POSITIVE
R15508	1.24	POSITIVE	Strains A-/B+ Ribotype 110		Test value	Interpretation
R15808	5.21	POSITIVE	R7771	R7771		EQUIVOCAL
R16448	1.83	POSITIVE	R7981		0.16	EQUIVOCAL
R16705	5.88	POSITIVE	C. difficile types		% VIDAS CDAB Postive	
R16809	1.5	POSITIVE	A+/B+		100% (23/23)	
R16811	2.97	POSITIVE	A-/B+ 83% (15/18)		18), 3 strains w	ere VIDAS Equivocal

CONCLUSION

The sensitivity, specificity, PPV and NPV of the VIDAS CDAB test in comparison to Cytotoxicity were 88.3%, 99.8%, 98.1% and 98.4% respectively*. The VIDAS CDAB provided higher specificity and PPV than the Premier Toxins A&B test and equivalent sensitivity and NPV when both assays were compared to the gold standard Cytotoxicity test. The VIDAS CDAB showed cross-reactivity only with *C. sordelli*, no interference and the ability to detect different strains of toxigenic *C. difficile*, including A+/B+ and A-/B+ strains. The VIDAS CDAB assay detected toxin A at a level of 7.73 ng/mL and toxin B at a level of 4.55 ng/ml in human stool. The VIDAS CDAB test enables automated, rapid and reliable detection of *C. difficile* toxins with good performance compared to the gold standard Cytotoxicity test.

*Extended 510k claims pending with US FDA.

^{**24} samples were VIDAS CDAB negative assay and Premier positive, of which 20 were Cytotoxicity test negative.
*** 4.2% (42/1011) samples were VIDAS CDAB equivocal, and were not taken into account for the positive, negative and global agreement calculation.